Lindeberg–Feller theorems on Lie groups

نویسنده

  • G. Pap
چکیده

`=1 ∫ |x|>ε |x| μn`(dx) = 0 for all ε > 0, where x 7→ |x| denotes a fixed homogeneous norm on the Heisenberg group. Professor E. Siebert suggested a way to prove similar results for a Lie group G. The main step is the generalization of Lemma 1 in Pap [4] for an arbitrary Lie group G, which gives an estimation for the Fourier transform of a probability measure on G in terms of integrals of local coordinates and a Hunt function, see Section 3. This lemma makes it possible to apply the accompanying Poisson system of a triangular system (μn`)`=1,...,kn;n>1 of probability measures on G in the usual way, see Section 4. Section 5 is devoted to Lindeberg–Feller type theorems on an arbitrary Lie group. Section 6 contains the important special case of stratified Lie groups, where the usual form of the Lindeberg–Feller theorem can be obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Measures as Limits on Irreducible Symmetric Spaces and Cones

We prove central limit theorems of Lindeberg-L evy and Lindeberg-Feller type for any K-invariant random variables on all irreducible symmetric spaces and irreducible symmetric cones, completing in this way the numerous partial results known before. In all cases the limit measures turn out to be Gaussian and being such a limit characterizes these measures. On the other hand we show that other cl...

متن کامل

A Probabilistic Proof of the Lindeberg-Feller Central Limit Theorem

The Central Limit Theorem, one of the most striking and useful results in probability and statistics, explains why the normal distribution appears in areas as diverse as gambling, measurement error, sampling, and statistical mechanics. In essence, the Central Limit Theorem states that the normal distribution applies whenever one is approximating probabilities for a quantity which is a sum of ma...

متن کامل

Generalizations of The Chung-Feller Theorem

The classical Chung-Feller theorem [2] tells us that the number of Dyck paths of length n with flaws m is the n-th Catalan number and independent on m. L. Shapiro [7] found the Chung-Feller properties for the Motzkin paths. In this paper, we find the connections between these two Chung-Feller theorems. We focus on the weighted versions of three classes of lattice paths and give the generalizati...

متن کامل

Generalizations of Chung-feller Theorems

In this paper, we develop a method to find Chung-Feller extensions for three kinds of different rooted lattice paths and prove Chung-Feller theorems for such lattice paths. In particular, we compute a generating function S(z) of a sequence formed by rooted lattice paths. We give combinatorial interpretations to the function of Chung-Feller type S(z)−yS(yz) 1−y for the generating function S(z). ...

متن کامل

Multilevel Monte Carlo for Asian options and limit theorems

The purpose of this paper is to study the problem of pricing Asian options using the multilevel Monte Carlo method recently introduced by Giles [8] and to prove a central limit theorem of Lindeberg Feller type for the obtained algorithm. Indeed, the implementation of such a method requires first a discretization of the integral of the payoff process. To do so, we use two well-known second order...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013